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Estrogens influence the growth, differentia-
tion, development, and function of several
target tissues involved in reproduction, car-
diovascular performance, bone maintenance,
homeostasis, and behavior. Many of these
processes are modulated as a result of estro-
gen receptor (ER)-mediated expression of
estrogen responsive genes. The binding of
estrogens to the ligand binding domain of
the ER causes dissociation of associated heat
shock proteins and subsequent dimerization
of ligand-occupied ERs. The homodimer
complex then interacts with specific DNA
sequences referred to as estrogen response
elements (ERE) located in the regulatory
region of estrogen-inducible genes. ER com-
plexes that are bound to an ERE recruit
additional transcription factors, leading to
increases in gene transcription (1,4. In addi-
tion to their known normal physiological
functions, estrogens have also been implicat-
ed in the development of hormone-depen-
dent cancers of the breast, ovaries,
endometrium, and prostate (3,4). Studies
suggest that estrogens promote the growth

and invasiveness of hormone-dependent
tumors by inducing genes such as growth
factors, growth factor receptors, protoonco-
genes, and proteases, which contribute to
cell proliferation, invasion, and metastasis
(4-8.

Estrogenic chemicals or mixtures have
been defined as substances whose effects are
mediated through the estrogen receptor, ini-
tiating a cascade of cellular/tissue effects
similar to those initiated by 17,-estradiol
(E2). In contrast, chemicals or complex mix-
tures whose effects resemble those of estro-
gen but are not mediated through the estro-
gen receptor are referred to as estrogenlike
(9). Recently, xenobiotics capable of elicit-
ing estrogenic activities have also been
implicated as contributing factors in the
development of hormone-dependent can-
cers, as well as compromising the reproduc-
tive fitness of humans and wildlife (10-14.
These chemicals, commonly referred to as
environmental estrogens, xenoestrogens, or
exoestrogens, encompass a wide range of
compounds including natural products,

environmental pollutants, pharmaceuticals,
and industrial chemicals. Many exoestrogens
do not share any structural similarity to the
prototypical estrogen, E2, the preeminent
female sex steroid (13). However, results
from in vitro studies have demonstrated that
exoestrogens can interact with the ER and
induce estrogenic responses (13-15).
Nevertheless, in vivo studies are required to
definitively demonstrate that a chemical pos-
sesses sufficient endocrine disrupting activi-
ties to adversely affect an organism (14,15).

Polychlorinated biphenyls (PCBs) are a
class of synthetic, persistent, lipophilic, halo-
genated aromatics that, despite their discon-
tinued use, are still found throughout the
environment as complex mixtures (16,17).
PCBs induce a broad spectrum of toxic and
biochemical responses in a number of in
vitro and in vivo models. Many of the
responses elicited by coplanar PCBs correlate
with their binding affinity to the aryl hydro-
carbon receptor (AhR), which is believed to
mediate several of the effects induced by
these compounds (18). However, noncopla-
nar PCBs that exhibit low or negligible bind-
ing affinity for the AhR have also been
shown to evoke a number of responses
including immunotoxicity and neurotoxicity
(19-23). Recent studies suggest that some of
these effects may be due to interactions with
calcium-dependent pathways (19,21,23). In
addition, hydroxylated metabolites of PCBs
have been found to interact with uteroglobin
(24) and transthyretin (25). Interactions
with these proteins have been implicated in
the diverse spectrum of reproductive and
endocrine-modulating activities reported in
laboratory animals as well as in humans
(16,18,26-28).
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Using three-dimensional quantitative
structure-activity relationships (QSAR),
Wailer and co-workers (29) have suggested
that structural similarities exist between E2
and PCBs. The model is based on hydroxyl-
ated chlorobiphenyl binding affinities for
the ER (30) and the alignment of the para-
substituted ring of the test molecule to the
hydroxylated A ring of E2. It suggests that
biphenyls possessing both ortho- and para-
substituents are capable of competing with
E2 for binding to the ER. Furthermore,
conformational restriction about the twist
bond of the biphenyl molecule due to
ortho-substitution is also predicted to be an
important factor. In vitro and in vivo stud-
ies have shown that selected PCBs and their
mixtures are capable of mimicking some of
the biological activities of estrogens. In
vitro, selected PCB congeners as well as
commercial Aroclor mixtures have been
reported to compete with E2 for binding to
the ER, promote MCF-7 human breast
cancer cell proliferation, and induce gene
expression (31-35). Rodents treated with
PCBs and commercial Arodors exhibited a
wide range of estrogenic effects including
precocious puberty, disrupted estrus, altered
temperature-sensitive sex determination,
and increases in the wet weight, water imbi-
bition, and glycogen content of the uterus,
as well as the induction of estrogen respon-
sive enzyme activities (36-42). Based on
their chemical structure and estrogenic
activities, it has been suggested that only
those PCB congeners that possess ortho-
substituents are capable of eliciting an estro-
genic response following hydroxylation at a
vacant para position (30). Results obtained
by Soto et al. (34) support this hypothesis
because 2,5-dichlorobiphenyl was found to
be inactive in the MCF-7 cell proliferation
assay (E-Screen), whereas ortho-, meta-, and
para-hydroxylation on the unsubstituted
ring significantly increased activity, with
para-hydroxylation conferring the greatest
effect. Similarly, it has been proposed that
methoxychlor and benz[a]anthracene also
require metabolic activation to hydroxylat-
ed metabolites to elicit estrogenic effects
(43,44). Numerous other experimental par-
adigms have since been used to demonstrate
that hydroxylated PCBs elicit ER-mediated
responses (30,39,45-4).

Taken together, these findings bolstered
preliminary epidemiological reports that
found higher levels of PCBs in women with
breast cancer (48,49), leading some to sug-
gest that exposure to estrogenic PCBs may
be a contributing factor in the increased inci-
dence of hormone-dependent diseases and
compromised reproductive fitness in humans
and wildlife (10,11,50,51). However, subse-
quent epidemiological studies have failed to

demonstrate an association between PCB
body burdens and increased risk of breast
cancer (52-56). Furthermore, the antiestro-
genic activities of selected PCB congeners
and mass balance calculations indicate the
estrogenic burden contributed by PCBs is
minimal relative to other sources of exoe-
strogens (12,57,58).

To further investigate the alleged estro-
genic activities of PCBs and their metabo-
lites, we examined the ER-mediated effects
of 2,4,6,2',6'-pentachlorobiphenyl (PCB
104), 2,4,6,2',6'-pentachloro-4-biphenylol
(HO-PCB 104), and 2,4,6,2',4',6'-hexa-
chlorobiphenyl (PCB 155) (Fig. 1).
Although these compounds are not envi-
ronmentally relevant, they were chosen
because 1) PCB 104 exhibited significant
estrogenic activity in preliminary studies;
2) PCB 104 should be preferentially
hydroxylated at the vacant para position to
produce HO-PCB 104; and 3) PCB 155
represents the hexachloro-derivative of
PCB 104, with the chlorine substituent
occupying the vacant para position in PCB
104. Therefore, these three derivatives pro-
vide an excellent model to investigate the
effect ofpara-hydroxylation and para-chlo-
rination on the ER-mediated activities of
an alleged estrogenic PCB. In vitro assays
were used to determine the activities of
PCB 104, HO-PCB 104, and PCB 155 to
compete with E2 for binding to the mouse
uterine ER, promote MCF-7 human
breast cancer cell proliferation, and induce
gene expression using a recombinant recep-
tor/reporter gene assay. In addition, gas
chromatography-mass spectrophotometry
(GC-MS) was used to analyze media col-
lected from PCB 104-induced gene expres-
sion assays performed in transiently trans-
fected MCF-7 cells to determine the pres-
ence of the major expected metabolite HO-
PCB 104. Uterotrophic and vaginal cell
cornification assays were also performed to
examine the in vivo estrogenic effects of
PCB 104. Collectively, these results indi-
cate that all three compounds, PCB 104,
HO-PCB 104, and PCB 155, were capable
of eliciting ER-mediated activities.

Materials and Methods
Chemicals and consumables. PCB 104,
PCB 155, and HO-PCB 104 were synthe-
sized and chemically analyzed as previously
described and were >98% pure as deter-
mined by gas chromatographic analysis
(59,60). E2 was purchased from Sigma
Chemical Company (St. Louis, MO).
Serial dilutions of the PCBs and E2 were
prepared in dimethyl sulfoxide (DMSO),
which was purchased from BDH (Toronto,
Ontario, Canada). Phenol red-free
Dulbecco's modified eagle's medium

Figure 1. Structure of 171-estradiol, the polychlori-
nated biphenyls, and the hydroxylated metabolite.

(MEM) powder and media supplements
were purchased from Gibco/BRL
(Burlington, Ontario, Canada). Fetal
bovine serum (FBS) was obtained from
CanSera (Rexdale, Ontario, Canada). D-
Luciferin was purchased from Molecular
Probes (Eugene, OR). Sesame oil was
obtained from Aldon Corporation (Avon,
NY). All other chemicals and biochemicals
were of the highest quality available from
commercial sources.

Standards of PCB 104, 3,4,5,3',4',5'-
hexachloro[13C12]biphenyl (MBP126), and
HO-PCB 104 were obtained from Welling-
ton Laboratories (Guelph, Ontario, Canada).
All solvents used for GC-MS analyses were of
glass-distilled quality and were obtained from
Caledon Laboratories (Georgetown, Ontario,
Canada). Iodo-methane and tetrabutylam-
monium hydroxide (1.0 M in methanol)
were obtained from Fisher Scientific Limited
(Ottawa, Ontario, Canada).
Animals. CD-1 mice were obtained from
Charles River Breeding Laboratories
(Montreal, Quebec, Canada) and housed in
a controlled environment with a 12 hr
light-dark cycle, ambient air temperature
was controlled at 20-220C, and the relative
humidity was maintained at 40-60%.
Purina RMH 3000 chow (Purina, New
Hamburg, Ontario, Canada) and tap water
were provided ad libitum. Animals were
euthanized by CO2 asphyxiation 24 hr fol-
lowing the last treatment.
Ligand binding assay. Shordy after weaning,
uterine tissue was collected, weighed, and
homogenized on ice in 1 ml of ice-cold
TEGD (10 mM tris base, 1.5 mM EDTA,
10% glycerol, 1.0 mM dithiothreitol, pH
7.6) per 50 mg uterine tissue with three 20-
sec bursts using a Brinkman Polytron tissue
homogenizer (Brinkman, Mississauga,
Ontario, Canada) at 50% output. Samples
were centrifuged at 3,000 x g for 10 min at
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40C. The supernatant was centrifuged at
105,000 x g for 1 hr at 40C. The resulting
supernatant constituting the cytosol was care-
filly decanted, and the protein concentration
was adjusted to 2.0 mg/ml. The cytosol was
stored at -80°C for use within 4 weeks.

Specific binding of [3H]-E2 was measured
as previously described by Laws et al. (61).
Briefly, aliquots of cytosol (240 pl) were incu-
bated with 30 pi 1 nM [3H]-E2 and 30 pl
competitor. The final concentration of com-
petitor was either 0.1-1,000 nM unlabeled
E2, 0.001-1,000 pM PCB, or solvent.
Incubations were carried out at 300C for 30
min and then cooled to 40C. Each sample
was divided into two 130-,ul aliquots, and
bound ligand was separated from free ligand
by the addition of 125 p1 60% (v/v) hydroxy-
lapatite (HAP) suspension in TEGD buffer.
The mixture was washed three times with ice-
cold TEGD buffer containing 1% Triton X-
100, and the test tubes were inverted and
allowed to dry. The ER was denatured by the
addition of 1 ml absolute ethanol and bound
[3H]-E2 was measured using a scintillation
counter. Each treatment was performed in
duplicate, and two samples were counted
from each test tube. Results are expressed as
percent specific binding of [3H]-E2 versus log
of the competitor concentration.
Cell culture. MCF-7 cells are ER-positive
estrogen responsive human breast cancer
cells (provided by L. Murphy, University of
Manitoba, Manitoba, Canada). MCF-7
cells were grown in phenol red-free MEM
supplemented with 10% FBS and 24 mM
sodium bicarbonate, 1 nM glucose, 20 mM
4-(2-hydroxyethyl)-1 -piperazineethanesul-
fonic acid (HEPES), Ix nonessential amino
acids, Ix vitamin supplement solution, 10
mM sodium pyruvate, 2 mg/ml lipoic acid,
1.38 mg/ml vitamin B12, 0.5 mM zinc sul-
fate, 2 mM glutamine, 50 g/ml gentamycin,
100 IU penicillin, 100 pg/inl streptomycin,
and 2.5 pg/ml amphotercin B. The cells
were grown at 37°C in a 5% CO2 humidi-
fied environment.

Transfections and reporter gene assays.
Transient transfections and gene transcrip-
tion assays were performed essentially as pre-
viously described (47,62-64). Briefly, MCF-
7 cells were seeded at approximately 50%
confluency in 6-well tissue culture plates in
medium supplemented with 5% dextran-
coated charcoal-treated fetal bovine serum
(DCC-FBS) and allowed to attach for 6 hr.
Cells were then transiently transfected by
the calcium phosphate co-precipitation
method (65) with 2.5 pg 17m5-G-Luc (pro-
vided by P. Chambon, IGBMC, Illkirch,
France), 0.5 pg Gal4-human ER chimera
(Gal4-HEGO) (66), along with 0.01 pg
pCMV-lacZ (3-galactosidase expression vec-
tor, provided by G. DiMattia, London
Regional Cancer Centre, London, Ontario,
Canada) or 1.5 pg pCH1 10 (Pharmacia,
Baie d'Urfe, Quebec, Canada). Cells were
washed 16 hr later with sterile phosphate-
buffered saline (PBS) and fresh medium was
added to each well.

Transfected MCF-7 cells were exposed
to the following final concentrations: 0.1, 1, and
10 pM of test compound; 1 pM-10 nM
E2. or DMSO (solvent) alone. Final con-
centrations were obtained by adding 2.5 pl
of test chemical to 2.5 ml of medium.
Following incubation with the test com-
pound for 24 hr, cells were harvested and
assayed for luciferase activity according to
the method described by Brasier et al. (67).

The reference plasmid, pCMV-lacZ or
pCH 110, was co-transfected as an internal
control to correct for differences in transfec-
tion efficiencies and sample extractions. I-
Galactosidase activity was measured accord-
ing to standard protocols (65). Transiently
transfected MCF-7 cells were treated in
duplicate and two samples were taken from
each replicate. Therefore, the means and
standard deviations were calculated from
four measurements. Each experiment was
repeated three times. Values were reported
as a percentage relative to the maximum
induction observed with E2.

Table 1. In vivo effects of 17a-ethynyl estradiol and 2,4,6,2',6'-pentachlorobiphenyl (PCB 104) on mature
ovariectomized CD-1 mice

Uterine wet weight Number of Cornification of
Treatmenta Daily dose per body weight (mg/g)b positive smearsc smears (%)d
Sesame oil (vehicle) 0.1 ml 1.1 ± 0.1 0/5 0
17a-Ethynyl estradiol 1 mg/kg 4.6 ± 1.2e 5/5 82 ± 20
PCB 104 202 mg/kg 1.8 ± 0.1e 5/5 44 ± 26
PCB 104 16 mg /kg 1.3 ± 0.3 4/5 20 ± 34
PCB 104 1.7 mg/kg 1.1 ± 0.2 4/5 6 ± 6

aAnimals were orally gavaged for 4 consecutive days with the indicated doses.
tThe mean ± standard deviation were results obtained from five mice.
CA positive smear is defined as a vaginal smear that contained cornified cells as determined by histologi-
cal examination.
dSmears were scored by two investigators blind to the treatments as the percentage of cornified cells
relative to the population of all other cell types present in the smear, as described by Terenius (68).
eDenotes increase in uterine wet weight (p < 0.0002) relative to the sesame oil control.

Cell proliferation assay. MCF-7 cells
(obtained from ATCC, Rockville, MD) were
grown and the assay performed as previously
described (63). The cells were treated with
0.01-10 pM PCB 104, HO-PCB 104, or
PCB 155 alone or in the presence of 1 nM
E2. Each treatment was performed in tripli-
cate, and the assay was performed two times.
Mouse uterotrophik and vaginal cornifica-
tion assay. Ovariectomized (OVX) CD-1
mice were received at approximately 12
weeks of age with a mean weight of 41 g
(Charles River, Montreal, Quebec, Canada).
Following 6 days of acclimatization, the mice
were orally gavaged daily for 4 consecutive
days with 0.1 ml of sesame oil containing
17a-ethynyl estradiol (EE) or PCB 104 at
the doses indicated in Table 1. Doses were
calculated based on the average weight of the
animal groups on day 1 of treatment. On
day 5, mice were euthanized by CO2 asphyx-
iation 24 hr following the last treatment, the
animals were weighed, and the uteri were
then removed, trimmed of adhering fat and
connective tissue, blotted to remove water,
and weighed. Results were expressed as the
mean ± standard deviation (SD) of the uter-
ine wet weight to body weight ratio.

Vaginal smears were obtained using
physiological saline on day 5 following
euthanization. The smears were evaluated
by two independent evaluators who were
blind to the treatment protocol and were
scored as the percentage of cornified cells
relative to the population of all cell types
present, as described by Terenius (68).
Interscorer reliability was greater than
90%. Smears were also evaluated as posi-
tive or negative, depending on the presence
or absence of cornified cells.
GC-MS analysis. The medium from treated
MCF-7 cells was initially extracted with
chloroform and evaporated to dryness for
shipping. The extracts were dissolved in
dichloromethane (DCM; 3 ml) and exactly

140 _VI _ __ EW9WWWWRI
Log a o c e (MI! ! I! S j s I _A PCB 104

F@0igure 2. Cmeiive!|ilnhbton o[H-1-esta
gen rcepto(ER)by unabele EO,PCB 104, O

0 PCB155.T r

X40 _ -i

20 =

-10 -9 -8 -7 -6 -5 -4 3

Log concentration of competitor (M)

Figure 2. Competitive inhibition of [3H]-17,B-estra-
diol ([3H]-E2) binding to the mouse uterine estro-
gen receptor (ER) by unlabeled E2, PCB 104, 1-0-
PCB 104, and PCB 155. The results are expressed
as percent binding relative to 1 nM [3H]-E2. The
illustrated results (mean ± standard deviation) are
from a representative experiment that was
repeated four times.
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one-third was taken for deanup, methylation,
and analysis. The GC-MS internal standard,
3,4,5,3',4',5'-hexachloro [I3C12] biphenyl
(MBP 126, 1,000 ng) was added to each
sample and the extracts were blown down to
dryness with nitrogen. Sulfuric acid (2 ml of
0.5 M) was then added to each extract and
the mixtures were shaken. These solutions
were then extracted twice with pentane/
diethylether (1:1; v/v). The pentane/
diethylether extracts were combined and
blown down to dryness, and 3 ml of acetone
was then added to each extract.

The procedure used for the methylation
of the chlorinated biphenylols (if present) fol-
lowed the methodology developed by Hopper
(6W and modified by Sandau and Norstrom
(70t). After methylation, the extracts were
concentrated with solvent exchange into
toluene (500 pl) for GC-MS analysis.

Analyses of the final extracts were per-
formed using a Hewlett Packard 5890 capil-
lary GC (Hewlett Packard, Mississauga,
Ontario, Canada) coupled to a Hewlett
Packard 5970 series mass selective detector
(GC-MSD). The GC was filled with a 30 m
DB-5 capillary column (0.25 mm inner
diameter, 0.25 mm film thickness; J & W
Scientific, Brockville, Ontario, Canada). The
injector and detector temperatures were
2500C and 3000C, respectively. The GC
oven had the following temperature pro-
gram: initial temperature of 90°C; hold time,
7.5 min; temperature program, 10°C/min to
320°C; hold time, 10 min. Splitless injec-
tions of 2 ml of each extract were made with
a purge valve time of 1.5 min. The GC-
MSD was operated in the SIM (selected ion
monitoring) mode. The ions monitored were
324, 326, and 328 for PCB 104; 336, 338,
and 340 for the GC/MS internal standard
MBP126; and 354, 356, and 358 for HO-
PCB 104. Four calibration standard solu-
tions were prepared by accurately mixing
stock solutions of PCB 104, MBP126, and
HO-PCB 104 in various proportions and
diluting these mixtures with acetone.
Aliquots of these solutions were then treated
using the same procedures that were used for
the extracts.
Statisties. Statistical analysis was by
Duncan's new multiple range test [one-way
analysis of variance (ANOVA)] at the
p<0.05 significance level. If significant dif-
ferences were found, subsequent Student's
t-tests were calculated. Significant differ-
ences were defined when p<0.05, unless
otherwise indicated.

Results
In vitro competitive ligand-binding assay.
Competitive ligand-binding assays with
[3H]-E2 were used to determine the bind-
ing affinities of PCB 104, HO-PCB 104,

and PCB 155 to the mouse uterine ER
(Fig. 2). The concentration of PCB 104
needed to inhibit binding of 50% of the
labeled ligand (IC50) was 1.7 PM, which is
approximately 110-fold less effective than
E2 (IC50 = 15 nM). para-Hydroxylation of
PCB 104 to HO-PCB 104 increased the
binding affinity for the ER by 24-fold. The
IC50 value for HO-PCB 104 was 70 nM,
approximately 4.5-fold less than the IC50
value for E2. PCB 155 was the least effec-
tive competitor, with an IC50 value of 5.6
pM, which is 362-fold less affinity for the
ER than E2.
Estrogen receptor-mediated agonist and
antagonist activities using recombinant
receptor/reporter gene assays. The ER-
mediated estrogenic and antiestrogenic
activities of PCB 104, HO-PCB 104, and
PCB 155 were assessed using a recombi-
nant receptor/reporter gene assay. This
assay measures luciferase activity in MCF-7
cells transiently transfected with a Gal4-
HEGO chimeric receptor, which consists
of the yeast Gal4 DNA binding domain
linked to the ligand binding domain of the
human ER, and a Gal4 response element
(17mer)-regulated reporter gene (17m5-G-
Luc), which contains five tandem 17mer
response elements upstream of the rabbit
0-globin promoter linked to the firefly
luciferase reporter gene. Because expression

120

110

100

90

,80
Ca
Ca 7070
(a
co
a 60

8
.2 50

U 40
X 3

30

20

10

0

of luciferase in this system can only be
induced through activation of the Gal4-
HEGO chimeric receptor, induction of
1 7m5-G-Luc activity provides definitive
evidence of ER-mediated activity. This
assay has been previously used to identify
and assess the ER-mediated activities of a
number of alleged exoestrogens and complex
mixtures (46,47,62-64,71-73).

E2 induced a dose-dependent increase in
luciferase activity, reaching a 100% response
(69-fold induction) at 50 nM E2 (Fig. 3).
PCB 104 induced luciferase activity in a
dose-dependent manner with a relative activ-
ity of45% (31-fold) at a concentration of 10
M, the highest concentration tested, when
compared to the 100% response observed
with E2. The para-hydroxylated derivative
HO-PCB 104 produced a modest increase
in estrogenicity at 0.1 and 1.0 pM, reaching
a maximum of 15-fold induction. However,
the observed induction was only 9-fold at 10
pM. Visual inspection of the cells and mea-
surement of ,B-galactosidase activity did not
indicate that the low level of 17m5-G-Luc
activity was due to HO-PCB 104 toxicity
(data not shown). PCB 155 showed minimal
estrogenic activity (Fig. 3). Induction by E2,
PCB 104, and HO-PCB 104 was complete-
ly inhibited by the pure antiestrogen ICI
164,384 (100 nM), thus confirming the role
of the ER in mediating the response (Fig. 4).
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Figure 3. The estrogen receptor (ER)-mediated effects of 17)i-estradiol (E2), PCB 104, H0-PCB 104, and PCB
155 in the recombinant receptor/reporter gene assay. MCF-7 human breast cancer cells were transiently
transfected with the Gal4-human ER chimera (Gal4-HEG0) and the Gal4 response element-regulated
reporter gene (17m5-G-Luc) as described in Materials and Methods. The control cells (C) were transiently
transfected MCF-7 cells treated with DMS0 at a final concentration of 0.1%. The values are relative to the
maximum induction observed with 5 nM E2 following a 24-hr incubation and represent the mean of four
determinations ± standard deviation. Two replicates were taken from each treatment and each treatment
was performed in duplicate. All treatments were significantly (p < 0.05) greater than control except for the
lowest concentration of PCB 104. The illustrated results are from a representative experiment that was
repeated two times.
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Figure 4. Effect of PCB 104, H0-PCB 104, PCB 155, or ICI 164,384 on Gal4-human estrogen receptor (ER)
chimera (Gal4-HEGO)-mediated induction of the Gal4 response element-regulated reporter gene (17m5-G-
Luc) in transiently transfected MCF-7 human breast cancer cells induced by 1 nM 17p-estradiol (E2). The con-
trols were treated with DMS0 at a final concentration of 0.1%. The values are relative to the maximum induc-
tion obtained with 1 nM E2 following a 24-hr incubation and represent the mean of four determinations ± stan-
dard deviation. Two replicates were taken from each treatment and each treatment was performed in dupli-
cate. The illustrated results are from a representative experiment that was repeated two times.
*Indicates treatments significantly (p < 0.05) different from the response obtained following treatment with
1 nM E2.

In the absence of Gal4-HEGO, E2, PCB
104, and HO-PCB 104 failed to induced
luciferase activity (data not shown).

To determine the optimal incubation
time for the induction of luciferase activity,
transiently transfected MCF-7 cells were

treated for 8, 16, 24, 36, and 48 hr with
increasing concentrations of E2, PCB 104,
or PCB 155. Maximum luciferase activity
was induced by 5 nM E2, the highest con-

centration tested, following incubation of
the cells for approximately 16 hr (Fig. 5A).
Luciferase activity decreased only twofold
after 24 hr and remained induced over a

period of 36-48 hr. Similarly, 10 pM PCB
104 induced maximum reporter gene activi-
ty after approximately 16 hr of exposure

(Fig. 5B). However, the activity induced by
1 and 10 pM PCB 104 decreased sixfold
after 24 hr and remained low over the 36
and 48 hr incubation periods (Fig. 5B). This
dramatic decline in luciferase activity cannot

be attributed to toxicity because the activity
of the constitutively expressed 1-galactosi-
dase expression vector (i.e., pCH1 10) did
not decrease, but remained consistent over

the same time period (data not shown).
PCB 155 did not significantly induce
luciferase at any concentration tested at any

time point (data not shown). Although
maximum induction was observed following
a 16-hr incubation period, 24-hr incubation
periods were used in order for comparison
to be consistent with previous studies.

In order to investigate the effects of E2
plus PCBs on gene expression, MCF-7 cells
transiently transfected with Gal4-HEGO
and 17m5-G-Luc were treated with 1 nM
E2 and increasing concentrations of PCB
104, HO-PCB 104, and PCB 155 (0.1, 1,
and 10 pM). As shown in Figure 4, co-

treatment with E2 plus PCB 104 had little
effect when compared to E2 alone.
However, HO-PCB 104 exhibited additive
effects at 10 pM in the presence of E2,
whereas lower concentrations of HO-PCB
104 showed little effect when compared to

E2 alone. In contrast, PCB 155 significant-
ly decreased E2-induced luciferase activity
in a dose-dependent manner.

Metabolic hydroxylation of PCBs is
preferentially targeted to the para position
(74,75). Therefore, media from transiently
transfected MCF-7 cells treated with PCB
104 were collected following incubation
with PCB 104 at 8, 24, and 48 hr and were

specifically analyzed for the presence of the
para-hydroxylated product, HO-PCB 104.
Selective ion monitoring (SIM) GC-MS
analysis failed to detect the presence of
HO-PCB 104 or any other hydroxylated
isomers of this product in the media
extracts. HO-PCB 104 was detected in two

spiked samples, and the efficiency of recov-

ery from the media was calculated to be 66
and 83%. A consistent level of PCB 104
was detected in all of the extracts.

Recoveries of the internal standard

(MBP126) were essentially quantitative.
The average percent recovery was 118%,
and the values ranged from 95% to 133%
for the 10 extracts and 2 spiked extracts.
Effect on MCF-7 cell proliferation. The
effects of PCB 104, HO-PCB 104, and
PCB 155 treatments on the estrogen-depen-
dent proliferation of MCF-7 cells were also
investigated (Fig. 6A). Cell proliferation was
induced twofold following treatment with 1
pM PCB 104, whereas at 10 ^M, PCB 104
dramatically decreased cell numbers to
below control levels. HO-PCB 104 (0.1
1M) was found to be more potent, inducing
a fourfold increase in cell proliferation.
Maximum induction (fivefold) of cell prolif-
eration was observed with 1 11M HO-PCB
104. Cell numbers dramatically decreased to
below control levels when incubated with 10
pM HO-PCB 104. PCB 155 induced small
but significant increases in cell growth; how-
ever, the response did not appear to be dose
dependent.

Co-treatment of MCF-7 cells with 1
nM E2 plus 1 pM PCB 104 or 1 pM HO-
PCB 104 resulted in significant increases in
cell growth compared to cells treated with
E2 alone (Fig. 6B). However, dramatic
decreases in cell numbers were once again
observed after treatment of the cells with 10
pM PCB 104 or HO-PCB 104 (Fig. 6B).
Co-treatment with 1 nM E2 plus PCB 155
at 0.01, 0.1, and 1.0 pM increased cell
numbers when compared to E2 alone, but
not in a dose-dependent manner. In con-
trast, 10 piM PCB 155 significantly inhibit-
ed E2-induced cell proliferation when com-
pared to 1 nM E2 alone.
Uterotrophic and vaginal cel cornifica-
tion effects ofPCB 104. Because in vitro
assays do not accurately reproduce the myr-
iad pharmacodynamic and pharmacokinet-
ic interactions that may occur in vivo, the
effects of PCB 104 on uterine wet weight
and vaginal epithelial cell cornification
were examined. PCB 104 was administered
by oral gavage to more accurately repro-
duce a more probable route of exposure.

Table 1 summarizes the results obtained
from the uterotrophic and vaginal cell cornifi-
cation assays. Mature, OVX mice treated
daily with 1 mg/kg EE for 4 days exhibited
approximately a fourfold increase in uterine
wet weight. PCB 104 produced a modest
dose-response increase in uterine wet weight,
though only the highest dose of 202 mg/kg
was significantly greater (p < 0.0002) than the
vehicle control (sesame oil) alone. Treatment
of the animals with 202, 16, and 1.7 mg/kg
PCB 104 did not produce significant changes
in body weight throughout the duration of
the experiment (data not shown).

The occurrence of vaginal cell cornifica-
tion was also assessed in the same mice.
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Figure 5. Time- and concentration-dependent effects of (A) 173-estradiol (E2) and (B) PCB 104 on Gal4
human estrogen receptor chimera-mediated induction of 17m5-G-Luc activity in transiently transfected
MCF-7 human breast cancer cells. The controls were treated with DMS0 at a final concentration of 0.1%.
The values are relative to the maximum induction obtained with 5 nM E2 following a 16-hr incubation and
represent the mean of four determinations ± standard deviation. Two replicates were taken from each
treatment, which was performed in duplicate. All treatments were significantly (p < 0.05) greater than the
respective controls except for 0.1 pM PCB 104 following incubation for 8 hr.

Administration of EE and PCB 104
induced cornification of vaginal epithelial
cells at all doses examined. Using a semi-
quantitative evaluation method described by
Terenius (68), 1 mg/kg EE was assigned a
score of 82% efficacy in inducing the corni-
fication of vaginal cells. Treatment of mice
with PCB 104 resulted in a dose-dependent

increase in vaginal cell cornification, even at
the lowest dose (1.7 mg/kg) ofPCB 104.

Discussion
It has been suggested that selected PCBs
may be rendered estrogenically active follow-
ing metabolic hydroxylation at vacant para
positions (30). Earlier studies examining

exoestrogens have demonstrated that the
degree of chlorination, as well as the substi-
tution pattern, can significantly influence
the estrogenic activities of a compound
(13,76). Similar findings have also been
reported for PCBs and their hydroxylated
metabolites (30,31,39,46,47). However,
few studies have systematically investigated
the in vitro and in vivo ER-mediated activi-
ties of PCB hydrocarbons (31). The results
in this report confirm the importance of
para-hydroxylation and para-chlorination
on the estrogenic activities of PCBs and
demonstrate that nonhydroxylated PCBs
are capable of eliciting ER-mediated
responses.

PCB 104, HO-PCB 104, and PCB 155
all exhibited significant ER-mediated activ-
ities in the in vitro assays used in this study.
All three compounds effectively competed
with [3H]-E2 for binding to the mouse
uterine ER. Hydroxylation of PCB 104 at
the vacant para position significantly
increased the binding affinity of HO-PCB
104. The median effective concentration
(EC50) values obtained for these com-
pounds are comparable to the EC50 values
reported for other hydroxylated PCBs as
well as other exoestrogens (15). Although
these results demonstrate that PCB 104,
HO-PCB 104, and PCB 155 can interact
with the mouse uterine ER, they do not
provide sufficient evidence to conclude that
these compounds are estrogenic. In addi-
tion, results obtained from competitive
binding assays do not provide information
regarding the agonist or antagonist activi-
ties of a chemical.

Recombinant receptor/reporter gene
expression and MCF-7 cell proliferation
assays were also used to investigate the ago-
nist and antagonist activities of the three
aforementioned compounds. PCB 104 and
HO-PCB 104 exhibited significant agonist
activity in the gene expression assay. GC-
MS analysis confirmed that the induction of
17m5-G-Luc activity was due to PCB 104
because neither the expected HO-PCB 104
metabolite nor any isomers of this product
were detected in the media. In addition,
GC-MS analysis also confirmed that there
were no measurable changes in PCB 104
levels in the media. Luciferase activity
induced by PCB 104 and HO-PCB 104
was inhibited by the pure antiestrogen ICI
164,384 and was not observed in the
absence of Gal4-HEGO (data not shown),
thus, further verifying that the observed
responses were mediated by the ER. Co-
treatment of transiently transfected MCF-7
cells with E2 plus PCB 104 or HO-PCB
104 did not induce a synergistic response,
although additivity was observed following
co-treatment with E2 and 10 pM HO-PCB.
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Figure 6. Effects of PCB 104, HO-PCB 104, and PCB 155 (A) alone or (B) co-treated with 1 nM 170-estradi-
ol (E2) on the estrogen-dependent growth of MCF-7 human breast cancer cells in culture. Error bars indi-
cate standard deviation. The cells were treated and maintained as described in Materials and Methods.
*Indicates cell proliferation significantly (p<0.05) greater than the control (A) or cell proliferation signifi-
cantly greater than 1 nM E2 (B).

cells have been reported to possess a number
of metabolic capabilities (15), suggesting that
PCB 104 may have been biotransformed
into nonestrogenic metabolites. PCBs are

also metabolized into dihydrodiols and cate-

chols as well as phenolic, glutathione, and
methylsulfonyl conjugates (27), although
none these forms has been investigated for
estrogenic activity. The decrease in observed
activity could also be attributed to the weak
estrogenicity of PCB 104. The sustained
output model suggests that, in addition to

ER binding, the estrogenic potency of a

compound is dependent on the binding
affinity and the ability of the ligand to main-
tain nudear ER residency to initiate a cas-

cade of events that culminate in a response

(79-82). Whether this phenomenon is an

artifact of the experiment or a genuine obser-
vation requires further investigation.

Induction of uterine wet weight and
the cornification of vaginal epithelial cells
has been accepted as the benchmark to

determine if a compound or complex mix-
ture is estrogenic (83-85). Although in
vitro assays can more definitively demon-
strate that a compound can interact with
the ER and elicit a response, these bioassays
cannot replicate the myriad of pharmacoki-
netic and pharmacodynamic interactions
that may influence the estrogenic activity
of an alleged exoestrogen. For example, it
has been reported that selected phthalate
esters elicit estrogenic responses in vitro,
but have failed to induce uterine wet

weight or vaginal cell cornification (72).
Therefore, the effect of PCB 104 on uter-

ine wet weight and vaginal cell cornifica-
tion assays were conducted to determine its
estrogenic activity in an in vivo model.

Due to the limited availability of PCB
104, mature OVX CD-1 mice were used to

examine the effects on uterine wet weight
and vaginal epithelial cell cornification in
the same experiment. Daily treatment of
OVX mice with 202 mg/kg PCB 104 for 4
consecutive days induced a modest but sig-
nificant increase in uterine wet weight. The
sensitivity of this assay may have been
somewhat compromised by using mature

animals, which has been reported to be less
sensitive to the effects of estrogenic sub-
stances (84,86,87). Moreover, a semiquan-
titative procedure, which compares the dis-
appearance of leukocytes and the appear-
ance of cornified epithelial cells (68),
showed that PCB 104 induced a dose-
dependent increase in vaginal epithelial cell
cornification. This assay confirmed the in
vivo estrogenicity of PCB 104 since the
cornification response was more specific for
estrogens than the uterotrophic response
(85) and demonstrated that a cornification
response could be induced using 1.7 rig/kg
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In contrast, PCB 155 exhibited little agonist
activity, but significantly inhibited E2-
induced 17m5-G-Luc activity in a dose-
dependent manner. Comparable agonist and
antagonist activities were observed in MCF-7
cell proliferation assays; however, some sig-
nificant differences were observed at the
higher concentrations and in co-treatment
studies. Previous studies have demonstrated
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PCB 104, the lowest dose examined. These
results suggest that, with selected classes of
exoestrogens, vaginal epithelial cell cornifi-
cation may be a more sensitive indicator to
exposure to an estrogenic chemical than the
uterotrophic response. However, it is not
possible to definitively conclude that the
uterotrophic and vaginal epithelial cell
cornification responses were due to PCB
104 because it is conceivable that the com-
pound was metabolized in vivo to HO-PCB
104 and/or to related isomers.

Although the PCB congeners used in
this study are not detected at appreciable
levels in the environment, they are useful
probes to investigate the importance of
para-hydroxylation and para-chlorination
on the estrogenic activity of noncoplanar
PCBs, which represent the majority of rele-
vant congeners found in environmental and
biological matrices (17). The estrogenic
activities ofPCB 104 and PCB 155 support
the theoretical structural requirements pre-
dicted for PCB estrogenicity. Both con-
geners are conformationally restricted about
the twist bond due to ortho-substitution
and both also possess para-substituents
(29). In addition, these structural features
confer differential cytochrome P450 induc-
tion patterns. For example, coplanar PCBs
are primarily CYPlA inducers, noncoplanar
PCBs are primarily CYP2B inducers, and
mono-ortho coplanar congeners can be clas-
sified as mixed inducers (18). Metabolism
of these three classes of PCBs is similar with
preferential hydroxylation on the vacant
para and meta positions. However, they dif-
fer in their ability to act as substrates for
P4501A or 2B. P4502B from phenobarbi-
tal-treated rats has been shown to primarily
hydroxylate noncoplanar, di-ortho-substi-
tuted dichlorobiphenyls, while coplanar
dichlorobiphenyl congeners containing
meta- and para-substitution, are primarily
hydroxylated following incubation with

purified P4501A obtained from t-
napthoflavone-treated rats (75). Mono-
ortho-substituted dichlorobiphenyl con-
geners are metabolized to a similar extent
by both isozymes. Therefore, substitution
patterns can influence P450 isozyme induc-
tion, thus affecting the extent and type of
their own metabolism. Biphenyls have been
shown to be preferentially hydroxylated on
the para position in vitro (88) and in vivo
(89). 2- and 3-Hydroxybiphenyl metabo-
lites were also detected to a lesser degree
with species-specific differences (89).
Moreover, a single chlorine atom has been
shown to direct metabolism exclusively to
the unchlorinated ring, yielding a single
major metabolite that is hydroxylated on
the para position (90,91). Although metab-
olism can be restricted when both rings are
chlorinated (92), the existence of adjacent
unsubstituted carbon atoms, preferably at
the 3,4-position (93,94) greatly facilitates
hydroxylation on the para position via
arene oxide intermediates (91). Taken
together, these results strongly suggest that
multi-ortho-substituted PCB congeners
with vacant lateral positions are amenable
to para-hydroxylation, thus conforming to
the predicted structural requirements neces-
sary for estrogenicity (29). The increased
estrogenic activity observed in this study for
PCB 104 following hydroxylation on the
para position (i.e., HO-PCB 104) provides
experimental support for the theoretical
requirements for PCB estrogenicity as sug-
gested by Waller et al. (29). Therefore,
environmentally relevant noncoplanar
ortho-substituted PCBs that have vacant
para positions with unsubtituted carbon
atoms [i.e., 2,5,2'-trichlorobiphenyl (PCB
18); 2,3,2',5'-tetrachlorobiphenyl (PCB
44); 2,4,2',5'-tetrachlorobiphenyl (PCB
49); 2,5,2',5'-tetrachlorobiphenyl (PCB
52); 2,3',4',5'-tetrachlorobiphenyl (PCB
70); 2,4,5,2',5'-pentachlorobiphenyl (PCB

Table 2. Comparison of the percent amino acid similarity within the estrogen receptor D, E, and F domains
between species

Animal Source Species Accession No. Percent similaritya References

Human MCF-7 cells Homo sapiens M11457 100 (95,96)
Pig Sus scrofa Z37167 89 (97)
Sheep Ovis aries Z49257 89 (98)
Rat Sprague Dawley Rattusnorvegicus Y00102 89 (99,100)
Mouse Schnieder Mus musculinus M38651 89 (101)
Bird Chicken Gallus gallus X03805 79 (102,103)

Zebra finch Poephila guttata L7991 1 79 (104)
Frog African clawed frog Xenopus laevis L20735 63 (105)
Fish Rainbow trout Onchorhynkus mykiss M31559 47 (106)

Killifish Oryzias sp. D28954 47
Japanese eel Anguilla japonica S83514 45 (107)

ER b Leucocytes Homo sapiens X99101 47 (108)

-Amino acid similarities were calculated using MacVector and were based on a comparison to the D, E,
and F domains of the human estrogen receptor a.
bBoundaries for the human estrogen receptor 0i D, E, and F domains were determined based on amino
acid sequence similarity to the Japanese eel estrogen receptor.

101); and 2,3,5,6,2',5'-hexachlorobiphenyl
(PCB 151)] may also be susceptible to para-
hydroxylation and therefore conform to the
structural requirements necessary for ER
binding.

The ER is a member of the nuclear
receptor superfamily, which can be divided
into six domains labeled A-F (2. Although
the activities of estrogen and the ER are
highly conserved between species, the amino
acid sequence of the region responsible for
ligand binding and ligand-dependent gene
expression (i.e., domains D, E, and F) are
not as well conserved (Table 2). Examination
of the amino acid sequence of the ER ligand
binding domain (i.e., domain E) indicates
that significant differences in similarity exist
between species (Fig. 7). For example, the
hormone binding domain (i.e., domain E) of
the human ER (hER) shares 93% identity
with the chicken ER, 82% identity with the
Xenopus laevis ER (xER), but only 60% simi-
larity with the rainbow trout ER (rtER). The
percent identity between species is even less
when the D, E, and F domains are consid-
ered as a functional unit (Table 2 and Fig. 7)
because all three domains contribute to lig-
and binding and gene expression (109). This
leads to serious doubts regarding the viability
of using one surrogate species to accurately
predict responses in other species, especially
when investigating structurally diverse exoe-
strogens. For example: 1) the rtER has a 10-
fold lower binding affinity for E2 than hER
(110); 2) the rtER exhibits a fivefold lower
affinity for diethylstilbestrol (DES) when
compared to its affinity for E2, while DES
has a greater affinity for the hER than E2
(111); 3) HO-PCBs exhibit a significantly
different rank order binding affinity for rat
ER compared to mouse ER (46); 4) atrazine
and symazine, two chloro-S-triazine-derived
compounds, do not bind to rodent uterine
ERs and have failed to induce reporter gene
activity and cell proliferation in MCF-7
human breast cancer cells (34,63,112 while
atrazine and another related chloro-S-tri-
azine-derived compound, cyanazine, have
recently been shown to competitively dis-
place [3H]-E2 from American alligator ER
(35); 5) the hER exhibits a greater binding
affinity for dibutyl and butylbenzyl phthalate
ester than the rtER (72,113); 6) the pig ER
exhibited a slightly greater binding affinity
for a-zearalenol than the rat ER, but a signif-
icantly greater affinity than the chicken ER
(114); and 7) human ERa and the recently
cloned rat ERf, have been shown to exhibit
significantly different binding preferences
and binding affinities for selected exoestro-
gens (115). A comparison of their ligand
binding domains (i.e., domains D, E, and F)
indicates that they share approximately 55%
similarity in this region. In contrast, the rtER
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and hER ligand binding domains (i.e.,
domains D, E, and F) share only 40% iden-
tity, yet it is assumed that the two receptors
exhibit comparable binding affinities and lig-
and preferences.

Although these examples clearly illustrate
that species-specific ligand binding prefer-
ences and affinities exist, these differences
may also be attributed to the use of different
competitive binding assay protocols and/or
differences within ER containing cytosolic
preparations. Nevertheless, these examples
demonstrate that ligand preferences and
affinities for ERs may differ significantly

between species; therefore, it may not be
possible to extrapolate results from a single
surrogate species-based assay to other
species. Consequently, further research is
needed to investigate the potential species-
specific estrogenic activity of other exoestro-
gens including parent PCBs and their
hydroxylated metabolites.

To summarize, results from this study
have demonstrated that selected PCBs may
not require oxidation to a hydroxylated
metabolite to elicit ER-mediated activities.
Hydroxylation of the parent PCB was found
to enhance its binding affinity and potency,

although the latter affect was endpoint spe-
cific. Further studies are required in order to
identify other estrogenic PCBs and also to
examine the role of variable ER ligand bind-
ing domain sequences in determining
species-specific sensitivities to exoestrogens.
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